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Abstract

This paper introduces an original theoretical approach to the modelling of pinion–gear excitations valid
for three-dimensional models of single-stage geared transmissions. Shape deviations and errors on gears are
considered and the associated equations of motion account for time-varying mesh stiffness, and also
torsional, flexural and axial couplings. Starting from the instantaneous contact conditions between the
teeth, the equations of motion are re-formulated in terms of quasi-static transmission errors under load and
no-load transmission errors. The range of application of transmission error-based formulations is analysed
and some new equations are proposed which make it possible to introduce rigorously meshing excitations
via transmission errors. Using an extended finite element model of a spur and helical gear test rig, the
dynamic results from the formulations based on transmission errors are compared with the reference
solutions. Both sets of results are found to be in close agreement, thus validating the proposed theory. The
paper concludes with a critical analysis of the interests and limitations concerning the concept of
transmission errors as excitation terms in gear dynamics.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Over recent decades, many attempts have been made by numerous authors to set up models
aimed at simulating the dynamic behaviour of gears [1–5]. The mathematical formulations range
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Cm input torque on pinion shaft
Cm0 nominal resisting torque

(¼ ðRb1=Rb2ÞCr)
Cr output torque on gear shaft
Cv K̄

�1
V

Cwv WTK̄
�1
V

Cvv VTK̄
�1
V

ek eccentricity on solid k

E(W) see Eq. (14)
Ft tangential static mesh force

(¼ Cm0=Rb1 ¼ Cr=Rb2)
Fd dynamic normal mesh force
Fs static normal mesh force
F(W) see Eq. (14)
F0 constant force vector
g(W) shape function of mesh stiffness
G(W) see Eq. (14)
I1, I2 transverse moment of inertia of pinion,

of gear
Ip1, Ip2 polar moment of inertia of pinion, of

gear
J1, J2 polar moment of inertia of the pinion,

of the gear shaft line
K subscript (1 corresponds to pinion, 2 to

gear)
ki mesh stiffness associated with the ith

discretization cell of contact lines
km average mesh stiffness
K stiffness matrix with the contributions

of pinion and gear excluded
K̄ averaged total stiffness matrix
mk mass of solid k

meq equivalent mass ð¼ J1J2=ðJ1Rb22 þ
J2Rb21ÞÞ

Mi ith potential point of contact on contact
lines

M total mass matrix
n1 outer unit normal vector to pinion

tooth flanks
N(t) time-varying number of contacting

cells
NLTE no-load transmission error
O1,O2 centre of pinion, of gear
Rb1,Rb2 base radius of pinion, of gear

t time
Tm mesh period
T 01;T

0
2 limits of meshing area on base

plane
TE transmission error under load
TEs quasi-static transmission error under

load
uk axial elastic displacement of solid k

uR
k ðOkÞ translational displacement vector of

solid k in Ok with respect to rigid-body
motions

U total strain energy
Ug pinion–gear strain energy
vk elastic displacement of solid k in the

radial direction ðOk;~sÞ
vx VTX

vxs VTXs

vxD VTXD

vx0 VTX0

v
_

x0 VTX
_

0

V,V(Mi)averaged, actual structure vector at Mi

wk elastic displacement of solid k in the
radial direction ðOk;~tÞ

wx0 WTX0

w
_

x0 WTX
_

0

x Rb1y1+Rb2y2
xD,XD dynamic component of x, of X
xS,XS quasi-static component of x, of X
X elastic displacement vector
a amplitude ratio in the expression of the

mesh stiffness function (a � 1)
b, bb helix, base helix angle
d(Mi) deflection at a potential point of contact

Mi

de(Mi) equivalent normal deviation at a poten-
tial point of contact Mi

lk phase of eccentricity of solid k

f1,f2 angular degree of freedom (dof) of
pinion, of gear about ~s

c1,c2 angular dof of pinion, of gear about ~t
y1, y2 torsional dof of pinion, of gear
xR

k angular displacement vector of solid k

with respect to rigid-body motions
W ¼ O1t angular variable
O1,O2 rigid-body angular velocity of pinion,

of gear
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Symbols

_A time derivative of A

A0 derivative of A with respect to W ¼ O1t
~A restriction of A to the pinion–gear dof
AT AT: transpose of A
A column vector or matrix

P. Velex, M. Ajmi / Journal of Sound and Vibration 290 (2006) 882–909884
from single-degree-of freedom (sdof) models to finite element three-dimensional (3D) ones, but
virtually all gear dynamic models consider that transmission error and variations in mesh stiffness
are the primary sources of excitation. From the gear designer’s point of view, the definition of
tooth modifications for low-noise gears also relies on the minimization of transmission error
variations [6–8]. However, most of the theoretical background stems from sdof torsional models
[9] and very little attention has been given to the validity and limits of the concept of transmission
errors as excitation sources, particularly in the case of multi-degree-of-freedom (mdof) 3D
systems. Rather than developing a new mathematical model, some existing theoretical works are
investigated in the present paper with the objective of clarifying the role of transmission errors as
excitations in gear dynamics. Firstly, the classical sdof torsional model is re-examined in order to
provide a detailed analysis of the links between no-load, under load, quasi-static transmission
errors and forcing terms. Next, the analysis is extended to 3D mdof systems and a sound
theoretical background is derived for excitation modelling based on transmission errors. To this
end, the excitations associated with tooth meshing are derived from the instantaneous contact
conditions between mating tooth flanks and not from prior quasi-static analyses as is the case in
the vast majority of the models found in the literature. The connections with transmission errors
are then examined from a theoretical point of view and commented upon. All developments are
conducted from models of single-stage geared systems which account for time-varying mesh
stiffness, gear errors and tooth shape modifications.
2. Generalities

2.1. State of reference—rigid-body motions

Rigid-body rotations represent the state of reference [10] characterized by the following
kinematic and dynamic equations. At all non-singular points of contact M* between the pinion
and gear, rigid-body kinematics implies that (off-line-of-action contacts not being considered)

V1
2 Mn
� �

� nMn ¼ 0 (1)

with nMn , a unit normal vector at M* which, when introducing the time-derivative of no-load (or
rigid-body) transmission error NLTE projected as a distance on the base plane, is equivalent to

d

dt
NLTEð Þ ¼ Rb1O1 þRb2O2, (2)

where Rb1, Rb2 are the base radii of the pinion and the gear, and O1, O2 are the rigid-body
angular velocity of the pinion and gear, respectively.
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Using the Kinetic Energy Theorem, the rigid-body dynamic behaviour for frictionless gears is
controlled by

J1O1
_O1 þ J2O2

_O2 ¼ CmO1 þ CrO2 (3)

with J1, J2 being the polar moments of inertia of the pinion shaft line and the gear shaft line,
respectively, and Cm, Cr are the pinion and gear torques.
The system with 4 unknowns (O1, O2, Cm, Cr) is characterized by Eqs. (2) and (3) only, and 2

parameters have to be imposed. In the rest of the text, the pinion speed O1 and the output torque
Cr are supposed to be known and constant. In these conditions, the kinematic and dynamic
unknowns are deduced as

O2 ¼ �
Rb1

Rb2
O1 þ

1

Rb2

d

dt
NLTEð Þ, (4)

Cm ffi
Rb1

Rb2
Cr �

J2

Rb2

d2

dt2
NLTEð Þ

� �
ffi Cm0 �

J2

Rb22
Rb1

d2

dt2
NLTEð Þ, (5)

where Cm0 ¼ ðRb1=Rb2ÞCr is the nominal resisting torque, i.e., in the absence of no-load
transmission error.

2.2. Deformed state

2.2.1. Contact deflection
For any discrete model with two nodes at the pinion and gear centers, respectively, and a

maximum of 6 degrees of freedom (dof) per node, the pinion–gear pair can be assimilated to two
rigid cylinders linked by a time-varying set of lumped stiffnesses along the potential lines of
contact on the base plane (Fig. 1). In such conditions, elastic displacements can be described by
screws {Dk} associated with the pinion and gear of the form

Dkf g
xR

k

uR
k Okð Þ

;

(
(6a)

where k ¼ 1 for the pinion and k ¼ 2 for the gear, xR
k is the angular displacement vector and

uR
k Okð Þ is the translational displacement vector at the pinion and gear centres.
In the particular case of torsional models, the displacement screws reduce to

Dkf g
ykz

0

�
. (6b)

The deflection at any potential point of contact Mi (i.e., the normal approach relative to
rigid-body motions minus the initial gap due to errors and/or shape modifications) can be
expressed as

d Mið Þ ¼
X2
k¼1

uR
k Okð Þ þ xR

k �OkMi

� �
� nk � de Mið Þ

¼ V Mið Þ
TX� de Mið Þ, ð7Þ
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Fig. 1. Gear Model (12 dof), mesh elasticity and shape deviation modelling.

P. Velex, M. Ajmi / Journal of Sound and Vibration 290 (2006) 882–909886
where de(Mi) is the difference between the maximum of e(Mi) and e(Mi) at time t, e(Mi) is the
normal composite deviation (pinion+gear) at Mi. X is the total dof vector. V(Mi), the structure
vector [11,12], accounts for the particular gear geometry, and its restriction to the pinion–gear dof
is (the other components being zero)

~V Mið Þ
T
¼ n1;O1Mi � n1;�n1;�O2Mi � n1ð Þ. (8a)

In the particular case of torsional models, the non-zero components of the structure vector are

~V Mið Þ
T
¼ cosbb Rb1;Rb2h i. (8b)

2.2.2. Transmission error under load
According to Harris [13], Munro [14], etc., transmission error (TE) is a measure of departure

from perfect motion transfer between the pinion and gear where ‘perfect’ refers to perfectly
mounted rigid bodies with ideal geometries. The definition of transmission error under load is
clear when using the classical sdof torsional model since it relates directly to the angles of torsion
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of the pinion and gear. For other models (even purely torsional ones), the definition of
TE is ambiguous or at least not intrinsic. This is because its value can vary depending on
the chosen nodes (or cross-sections) of reference for measuring or calculating deviations
between actual and perfect rotation transfers from the pinion to the gear [15]. Throughout this
paper, transmission error is defined by extrapolating the usual experimental practice based on
encoders or accelerometers, i.e., from the actual total angles of rotation, either measured or
calculated at one section of reference on the pinion shaft (subscript I) and on the gear shaft
(subscript II) as schematically represented in Fig. 3. After projection on the theoretical base plane,
one obtains

TE ¼ Rb1

Z t

0

O1 dzþ yI

� �
þRb2

Z t

0

O1 dzþ yII

� �
¼ Rb1yI þRb2yII þNLTE (9)

with z, a dummy integration variable and yI, yII, the torsional perturbations with respect to rigid-
body rotations (dof) at node I on the pinion shaft and at node II on the gear shaft.
Introducing a projection vector W of components Rb1 and Rb2 at the positions corresponding

to the torsional dof at nodes I and II and with zeros elsewhere, transmission error under load can
finally be expressed as

TE ¼WTXþNLTE: (10)

2.2.3. Equations of motion
Based on the gear mesh interface model in Fig. 1, the gear strain energy is

Ug ¼
1

2

XN tð Þ

i

kid Mið Þ
2
¼

1

2
XT
XN tð Þ

i

kiV Mið ÞV Mið Þ
TX� XT

XN tð Þ

i

kide Mið ÞV Mið Þ

þ
1

2

XN tð Þ

i

kide Mið Þ
2

ð11Þ

with N(t) being the instantaneous number of active (loaded) stiffnesses at time t.
In the case of linear elements for shafts, bearings, couplings, etc., the total strain energy

reads

U ¼ Ug þ
1
2
XTKX, (12)

where K is a constant stiffness matrix which accounts for everything except the pinion and the
gear.
Neglecting both second-order terms and gyroscopic components, the kinetic energy relative to

the inertial frame of a pinion–gear pair becomes [10]

Tg ¼
1

2

X2
k¼1

mk _u2
k þ _vk þ Cskð Þ

2
þ _wk þ Ctkð Þ

2
� �

þ Ik
_f
2

k þ
_c
2

k

h i
þ Ipk Ok þ

_yk

� �2
(13)

with Csk ffi �ekOk sin Okt� lkð Þ and Ctk ffi ekOk cos Okt� lkð Þ, the consequences of possible
eccentricities ek on the pinion and/or the gear. mk is the mass, Ik the transverse moment of inertia
and Ipk the polar moment of inertia of the pinion or gear.



ARTICLE IN PRESS

P. Velex, M. Ajmi / Journal of Sound and Vibration 290 (2006) 882–909888
After applying Lagrange equations and replacing the time variable t with the angular
variable W ¼ O1t, the equations of motions for the undamped system are derived under
the form

O2
1MX00 þ Kþ

X
i

kiV Mið ÞV Mið Þ
T

" #
X ¼ F0 þ

X
i

kide Mið ÞV Mið Þ

� O2
1 NLTE00E Wð Þ þNLTE0F Wð Þ þG Wð Þ½ � ð14Þ

where M is the total mass matrix, F0 the constant force vector (nominal torques),

~E Wð ÞT ¼ 0; 0; 0; 0; 0; 0; 0;�m2
e2

Rb2
sin O2t� l2ð Þ;m2

e2

Rb2
cos O2t� l2ð Þ; 0; 0;

Ip2

Rb2

� 	
.

Apart from the components of ~E Wð Þ, the total vector E Wð Þ comprises the following:
(i)
 J2Rb1=Rb22 at the torsional dof associated with the input torque (from Eq. (5)),

(ii)
 Ipi=Rb2 at all the torsional dof of the gear shaft as a consequence of the non-steady rotational

speed when no-load transmission error is not nil (Ipi is the polar moment of inertia attached to
node i). � 	

~F Wð ÞT ¼ 0; 0; 0; 0; 0; 0; 0; 2m2

e2

Rb2

Rb1

Rb2
cos O2t� l2ð Þ; 2m2

e2

Rb2

Rb1

Rb2
sin O2t� l2ð Þ; 0; 0; 0 ,

~G Wð ÞT ¼ 0;�m1e1 cosð O1t� l1ð Þ;�m1e1 sin O1t� l1ð Þ; 0; 0; 0; 0,

�m2e2
Rb1

Rb2

� 	2

cos O2t� l2ð Þ;�m2e2
Rb1

Rb2

� 	2

sin O2t� l2ð Þ; 0; 0; 0Þ,
0 d
a ¼
dW

a.
3. Sdof torsional models

In the interest of clarity, the analysis of transmission errors as excitation terms is first conducted
by using the classical torsional model shown in Fig. 2, in order to privilege the methodological
approach as opposed to the mathematical manipulations required by a 3D model. In such
conditions, the differential system (14) reduces to

O2
1

J1 0

0 J2

" #
y001

y002

" #
þ

X
i

ki

 !
cos2 bb

Rb21 Rb1Rb2

Rb1Rb2 Rb22

2
4

3
5 y1

y2

" #

¼
Cm0

Cr

" #
� J2

Rb1

Rb22
O2

1 NLTE00
1

0

" #
�

J2

Rb2
O2

1 NLTE00
0

1

" #
þ

X
i

kide Mið Þ

 !
cos bb

Rb1

Rb2

" #
.

ð15Þ

After multiplying the first line in Eq. (15) by Rb1J2, the second line by Rb2J1, adding the two
equations and dividing all terms by (J1Rb22+J2Rb21), the semi-definite system (15) is transformed
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Fig. 2. Basic torsional model.
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into the differential equation

O2
1meqx00 þ

X
i

ki

 !
cos2 bbx ¼ Ftþ

X
i

kide Mið Þ

 !
cos bb � O2

1

J2

Rb22
NLTE00 (16)

where

x ¼ Rb1y1 þRb2y2,

meq ¼
J1J2

J1Rb22 þ J2Rb21
; equivalent mass,

Ft ¼
Cm0

Rb1
¼

Cr

Rb2
; tangential static mesh force.

The quasi-static equation is derived by imposing O1! 0 and reads

X
i

ki

 !S

cos2 bbxS ¼ Ftþ
X

i

kide Mið Þ

 !S

cos bb, (17)

where superscript S refers to quasi-static values of the functions.
Assuming that the dynamic contact conditions are similar to the quasi-static ones (partial or

total contact losses between the teeth and nonlinear jumps being excluded), so that

X
i

ki

 !S

ffi
X

i

ki

 !
, (18a)

X
i

kide Mið Þ

 !S

ffi
X

i

kide Mið Þ

 !
, (18b)
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the dynamic equation can be re-written after separating the average and time-varying components
of the mesh stiffness as

O2
1meqx00 þ kmcos

2 bb 1þ ag Wð Þð Þx ¼ kmcos
2 bb 1þ ag Wð Þð ÞxS � O2

1

J2

Rb22
NLTE00, (19)

where km is the average mesh stiffness such that
P

iki

� �
¼ km 1þ ag Wð Þð Þ and a � 1.

From the definition of transmission error under load in the direction of the line of action in
Eq. (10), the equation of motion can be written in terms of the quasi-static transmission error
under load TES and the no-load transmission error NLTE as

O2
1meqx00 þ kmcos

2 bb 1þ ag Wð Þð Þx ¼ kmcos
2 bb 1þ ag Wð Þð Þ TEs �NLTE½ �

� O2
1

J2

Rb22
NLTE00. ð20Þ

When considering the dynamic displacement xD ¼ x� xS as the major unknown, an alternative
form of interest is derived as:

O2
1meqx00D þ kmcos

2 bb 1þ ag Wð Þð ÞxD ¼ �meqO2
1 TE00S þ

J2

J1

Rb21

Rb22
NLTE00

" #
. (21)

The gear dynamic behaviour can be assessed by evaluating the corresponding dynamic tooth
loading. To this end, the total instantaneous mesh force is introduced and determined by adding
the forces in all the individual mesh stiffnesses on the base plane at a given time t as

FD ¼
X

i

ki x cos bb � dei

� �
¼ km 1þ ag Wð Þð Þ cos bbx�

X
i

kidei

 !
. (22)

The static Eq. (17) leads to X
i

kidei ¼ km 1þ ag Wð Þð Þ cos bbxS � FS (23)

with FS ¼ Ft= cos bb, the static normal mesh force, and the dynamic mesh force is finally deduced
as

FD ¼ FS þ km 1þ ag Wð Þð Þ cos bbxD. (24)
4. 3D models of geared systems

4.1. Equations of motion

Following the same procedure as for the sdof model, the set of quasi-static equations associated
with the equations of motion (14) is

Kþ
X

i

kiV Mið ÞV Mið Þ
T

 !S
2
4

3
5XS ¼ F0 þ

X
i

kide Mið ÞV Mið Þ

 !S

, (25)
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Assuming that the instantaneous meshing conditions are independent of speed and remain close
to those in quasi-static conditions, the equations of motion can be expressed as

O2
1MX00 þ Kþ

X
i

kiV Mið ÞV Mið Þ
T

 !" #
X ¼ Kþ

X
i

kiV Mið ÞV Mið Þ
T

 !" #
XS

� O2
1 NLTE00 E Wð Þ þNLTE0 F Wð Þ þG Wð Þ½ �. ð26Þ

4.2. Expression of the quasi-static deflection vector in terms of transmission errors

Contrary to the sdof model, the introduction of the quasi-static transmission error under load is
not direct because Eq. (10) does not provide a one-to-one correspondence between TES and the
static deflection vector XS. This difficulty can be resolved when replacing the actual structure
vector V(Mi) by its average value over one mesh period, denoted henceforth as V and independent
of the position of the potential point of contact under consideration. This simplification is used
(often implicitly) in the vast majority of the gear models in the literature and it slightly modifies
the gear–pinion angular bending stiffnesses (with respect to c1, c2, f1 and f2 according to the
terminology in Fig. 3) which are of secondary importance for narrow-faced gears. In such
conditions, the static equations can be re-written as

K̄XS ¼ F0 þ
X

i

kide Mið Þ

 !
V� akmg Wð ÞVVTXS (27)

with K̄ ¼ Kþ kmVV
T, averaged total stiffness matrix.

Assuming that there is a unique static deflection, i.e., K̄ is invertible (this condition was not
satisfied by the semi-definite system (15)), a development based on a fixed-point method can be
Z

PINION

GEAREncoder II

Encoder I

I 

IIθ

θ

Fig. 3. Positions of the section of reference (or encoders) for the definition of transmission errors.
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used since a � 1. The corresponding recursive expression, at iteration r, reads

X
ðrÞ
S ¼ X0 þ

X
i

kide Mið Þ

 !
� akmg Wð ÞVTX

ðr�1Þ
S

" #
CV (28)

with X0 ¼ K̄
�1
F0, the static solution with averaged mesh stiffness; CV ¼ K̄

�1
V, which indicates

that XS is of the form

XS ¼ X0 þ j Wð ÞCV (29)

where j Wð Þ is an unknown scalar function depending on time, on tooth shape deviations and
errors through

P
ikide Mið Þ

� �
, etc.

From the expression of the quasi-static transmission error under load (10), one obtains:

TES ¼ wx0 þ j Wð ÞCwv þNLTE; (30)

with wx0 ¼WTX0;Cwv ¼WT K̄
�1
V; from which, j Wð Þ is deduced as

j Wð Þ ¼
TES � wx0 �NLTE

Cwv

(31)

and the quasi-static solution can be expressed in terms of transmission errors as

XS ¼ X0 þ
TES � wx0 �NLTE

Cwv

Cv. (32)

4.3. Some analytical results

In the appendix, some original analytical results and properties about the terms Cvv, Cwv, vx0,
etc. in the above equations are established. The most important formulae are listed as follows:

Cvv ¼
1

km

, (33)

vx0 ¼ v
_

x0 ¼
Fs

km

, (34)

Cwv ¼
vx0

Fs cos bb

¼
1

km cos bb

, (35)

vxs ¼ vx0 þ cos bb TES �NLTE� wx0ð Þ. (36)

4.4. Equation for dynamic tooth load

Neglecting viscous forces, the general expression of the dynamic mesh force is

FD ¼
X

i

ki V
TX� de Mið Þ

� �
¼ km 1þ ag Wð Þð ÞVTX�

X
i

kide Mið Þ. (37)
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Replacing expression (32) of XS in the quasi-static equations (27) leads to the following

K̄ X0 þ
TE�NLTE� wx0

Cwv

Cv

� �
þ akmg Wð Þ vx0 þ

TE�NLTE� wx0

Cwv

Cvv

� �
V

¼ F0 þ
X

i

kide Mið Þ

 !
V, ð38Þ

where vx0 ¼ VTX0;Cvv ¼ VT K̄
�1
V; which after simplification, results in

X
i

kide Mið Þ ¼
TES � wx0 �NLTE

Cwv

1þ akmg Wð ÞCvvð Þ þ akmvx0g Wð Þ (39)

and leads to the dynamic force equation when re-injected in Eq. (37):

FD ¼ kmvx �
TES � wx0 �NLTE

Cwv

1þ akmg Wð ÞCvvð Þ þ akmg Wð Þ vx � vx0ð Þ, (40)

where vx ¼ VTX.
Using Eqs. (33)–(36), the total dynamic mesh force FD can be finally re-written in a simple form

very close to the sdof Eq. (24) as

FD ¼ FS þ km 1þ ag Wð Þð ÞvxD, (41)

where vxD ¼ VTXD and XD ¼ X� XS represents the dynamic displacement vector.
4.5. Equations of motion in terms of transmission errors

Combining the results in Sections 4.2, 4.3 and 4.4 and introducing a viscous damping matrix
[C], Eq. (26) can be transformed after some manipulations into

O2
1MX00 þ O1CX

0
þ K̄þ akmg Wð ÞVVT
� �

X

¼ F0 þ k Wð Þ cos bb TEs �NLTE� wx0ð Þ þ aFSg Wð Þ
� �

V

� O2
1 NLTE00 E Wð Þ þNLTE0 F Wð Þ þG Wð Þ½ �. ð42Þ

As for the sdof system, the quasi-static and dynamic displacements can be separated as

X ¼ XS þ XD. (43)

Using Eq. (35) and noting from Eqs. (A.2a) and (A.2b) (see the Appendix) that X
_

0 ¼ FSCv, the
nth derivatives with respect to the angular variable W of the quasi-static vector in (32) are

X
ðnÞ
S ¼

cos bb

vx0
TES �NLTEð Þ

ðnÞX
_

0 (44)
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and the dynamic displacements appear as the solutions of the differential system:

O2
1MX00D þ O1CX

0
D þ K̄þ akmg Wð ÞVVT

� �
XD

¼
� cos bbO

2
1

vx0
TE00SMX

_

0 �
cos bbO1

vx0
TE0SCX

_

0

þ
cos bbO1

vx0
NLTE0CX

_

0 � O2
1 NLTE00 E Wð Þ �

cos bb

vx0
MX

_

0

� �
þNLTE0F Wð Þ þG Wð Þ

� �
. ð45Þ
5. Approximate equations

In order to qualitatively appraise the contributions of the various excitation terms, an
approximate approach to the solution is proposed. There is no exact solution to the
parametrically excited differential Eqs. (20) and (21) or the differential systems (42) and (45)
but approximate equations of motion can be obtained by using a perturbation method [11,12].
Assuming that a �� 1 (this assumption being more suited to helical gears), particular stable
solutions can be sought as asymptotic expansions of the form

x ¼ TE�NLTE ¼ x 0ð Þ þ ax 1ð Þ þ a2x 2ð Þ þ � � � , (46a)

xD ¼ xDð0Þ þ axDð1Þ þ a2xDð2Þ þ � � � (46b)

or

X ¼ X 0ð Þ þ aX 1ð Þ þ a2X 2ð Þ þ � � � , (46c)

XD ¼ XDð0Þ þ aXDð1Þ þ a2XDð2Þ þ � � � . (46d)

The identification of the main order expressions leads to the following sets of equations
depending on the nature of the unknowns (total or dynamic displacements) and on the model:
(a) sdof torsional models

O2
1meqx00ð0Þ þ O1cx0ð0Þ þ kmcos

2 bbxð0Þ ¼ kmcos
2 bb TES �NLTE½ � � O2

1

J2

Rb22
NLTE00, (47a)

O2
1meqx00Dð0Þ þ O1cx0Dð0Þ þ kmcos

2 bbxDð0Þ ¼ �meqO2
1 TE00S þ

J2

J1

Rb21

Rb22
NLTE00

" #
. (47b)

(b) 3D models

O2
1MX00ð0Þ þ O1CX

0
ð0Þ þ K̄Xð0Þ

¼ F0 � km cos bbwx0Vþ km cos bb TES �NLTEð ÞV

� O2
1 NLTE00E Wð Þ þNLTE0F Wð Þ þG Wð Þ½ �. ð48aÞ
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O2
1MX00Dð0Þ þ O1CX

0
Dð0Þ þ ½ �K̄XDð0Þ

¼
� cos bbO

2
1

vx0
TE00SMX

_

0 � O2
1 NLTE00 E Wð Þ �

cos bb

vx0
MX

_

0

� �
þNLTE0 F Wð Þ þG Wð Þ

� �
. ð48bÞ

6. Numerical results—Assessment of transmission error-based formulations

In this section, the validity and limits of the proposed excitation models are examined by
comparing the numerical solutions of the general form in Eq. (14) and of the differential systems
with transmission errors as forcing terms. Because of the errors induced by numerical
differentiation, the formulation based on dynamic displacements and second-order time
derivatives of the quasi-static transmission error under load TES is not suited for numerical
integration and will be considered for qualitative discussions only.

6.1. Model

The geared drive under consideration is the one used in a series of experiments and
simulations by Baud and Velex [16]. It consists of a single-stage spur or helical geared
drive with noticeable contributions of bending–torsion couplings which make it impossible to
model as a purely torsional system. Gear geometries (including profile modifications) as well as
bearing stiffnesses are defined in Tables 1 and 2 and in Fig. 4, the pitch error distribution
(on the pinion only) is shown in Fig. 5. The dynamic model of the test gear–shaft–bearing
system is shown in Fig. 6; it comprises 40 elements (including a pinion–gear element) with 258 dof.
The tooth mesh model is based on the analytical formulae of Weber and Banaschek [17] and
O’Donnell [18]. A constant torque of 254.8Nm is applied at the motor (on the pinion shaft) and
the resisting load is given by a torsional stiffness at one free end of the gear shaft. Two different
damping levels are introduced through a unique modal damping factor of 0.03 and 0.1,
respectively.
Table 1

Gear data

Pinion Gear

Module (mm) 4

Tooth number 26 157

Pressure angle (deg) 20

Helix angle (deg) 0 or 20

Addendum coefficient 1 1

Dedendum coefficient 1.46 1.46

Profile shift coefficient 0.16 �0.16

Face width (mm) 50 40

Tip relief amplitude Pc (mm) 13.3 13.3

Extent of profile modification Lc (% of the nominal active profile) 0.2 (short) 0.2 (short)

0.5 (long) 0.5 (long)
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Table 2

Bearing data

Node Stiffness in the S direction

(N/m)

Stiffness in the S direction

(N/m)

Stiffness in the Z direction

(axial) (N/m)

5 1E9 1E9 0

9 1E9 1E9 0

13 0 0 3.5 E7

23 7E7 7E7 0

25 7E7 7E7 0

33 1E9 1E9 0

37 1E9 1E9 0

41 0 0 6E7

Pc

T1
'

T2
'

T1
"

T2
"

L c

Fig. 4. Definition of profile modifications (Pc is the tip relief amplitude, and Lc is the extent of modification measured

on the base plane).
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6.2. Numerical solutions

Time-step integrations based on the Newmark method combined with a normal contact
algorithm [10] are used for solving the following:
(i) The general form of the equations of motion (14), whose results compare well with the

experimental evidence from a highly instrumented single-stage spur and helical gear test rig as
shown in Ref. [16] and which will be subsequently used as references. Eq. (14) accounts for mesh
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26

2743

Fig. 6. Finite element model of the geared unit.
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stiffness parametric excitations, the contributions of tooth shape deviations and/or errors as well
as the possible effects of backlash and tooth separation.
(ii) The differential system (42) in which excitations are introduced via quasi-static transmission

error under load, no-load transmission error and its time-derivatives and time-varying mesh
stiffness.
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(iii) The main order approximate system (48a) where a constant stiffness matrix is employed
and which can be considered as a generalized form of the formulation proposed by Özgüven and
Houser [19].
Note that the contact algorithm is applied in all cases so that the time-varying stiffness matrix in

Eqs. (14) and (42) as well as the average stiffness matrix in Eq. (48a) are evaluated at each step
depending on the instantaneous contact conditions between the mating teeth. Finally, the quasi-
static transmission error TES and the no-load transmission error NLTE needed as parts of the
forcing terms in Eqs. (42) and (48a) are determined by solving Eq. (14) for a very low speed and
for the positions of the encoders (or nodes of reference) corresponding to position 1, as defined in
Position 3 

Position 2 

Position 1 

Encoder I

Encoder II 

Encoder I

Encoder II

Encoder I 

Encoder II

Fig. 7. Positions of encoders for transmission error calculations.
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Fig. 7. It is clear that this numerical approach to excitations in no way precludes the use
of experimental transmission error measurements for generating the forcing terms in Eqs. (42)
and (48a).
6.3. Results

6.3.1. Spur gears—short tip relief (Table 1), NLTE ¼ 0
The first set of response curves in Figs. 8a–c [NB: ‘Reference’ in Figs. 8–13 stands for solutions

obtained by numerical integration of Eq. (14)] was obtained for a modal damping factor of 0.03.
A high degree of agreement was found between the three solution methodologies except near the
major tooth critical speed where contacts between the teeth were momentarily lost and shocks
occurred. In such conditions, the hypothesis of similar contact conditions in both dynamic and
quasi-static regimes (see Eqs. (18) and (25)–(26)) was not verified and the transmission error-based
formulations were unable to correctly account for the amplitude jumps associated with these
contact losses. The latter emphasizes the need for including nonlinearities in gear dynamic models
particularly in the case of lightly damped spur gears. For a larger damping level (modal damping
factor of 0.1), the results were better and even the solutions derived from the perturbation method
at the main order look reasonably satisfactory (Figs. 9a–c).
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Fig. 8. Comparisons between the response curves from the solution of reference and the formulations based on

transmission errors (spur gear, modal damping factor of 0.03, short profile modifications, no pitch error) (a) maximum

dynamic tooth load versus pinion speed, (b) peak-to-peak of dynamic transmission error versus pinion speed, (c) peak-

to-peak of the acceleration at the pinion centre in the S direction versus pinion speed. , reference; , from

Eq. (42) (TE-based equations); , from Eq. (48a) (main order perturbation).
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Fig. 9. Comparisons between the response curves from the solution of reference and the formulations based on

transmission errors (spur gear, modal damping factor of 0.1, short profile modifications, no pitch error) (a) maximum

dynamic tooth load versus pinion speed, (b) peak-to-peak of dynamic transmission error versus pinion speed, (c) peak-

to-peak of the acceleration at the pinion centre in the S direction versus pinion speed. , reference; , from

Eq. (42) (TE-based equations); , from Eq. (48a) (main order perturbation).
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6.3.2. Spur gears—long tip relief (Table 1), NLTEa0
Here again, a very close agreement was observed (Figs. 10a–c) when comparing the response

curves delivered by the numerical integration of Eq. (42) and that of the equations of reference
(14). Moreover, the importance of NLTE00 in this particular case with long profile reliefs
was highlighted, particularly in the vicinity of tooth critical speeds. It was observed that
when NLTE00 was set at zero in the equations of motion, the dynamic responses were signi-
ficantly different from the reference curves. This phenomenon is indeed illustrated by the three
examples of instantaneous mesh force signals at 100, 400 and 800 rad/s on the pinion shaft
in Fig. 11.

6.3.3. Spur gears—short tip relief and pitch errors on the pinion (Table 1 and Fig. 5), NLTEa0
A more realistic situation was considered with the introduction of pitch errors in the

simulations. The tooth load, dynamic transmission error and acceleration curves in Figs. 12a, b
and c, respectively, show the soundness of the proposed formulations. However, the results
derived from the main order approximation of the perturbation method (48a) appear as less
accurate near critical speeds. It was also observed that the influence of NLTE00 is less pronounced
than in the case of long reliefs in Section 6.3.2 (Fig. 10).
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Fig. 10. Influence of no-load transmission error—comparisons between the response curves from the solution of

reference and the formulations based on transmission errors (spur gear, modal damping factor of 0.1, long profile

modifications, no pitch error): (a) maximum dynamic tooth load versus pinion speed, (b) peak-to-peak of dynamic

transmission error versus pinion speed, (c) peak-to-peak of the acceleration at the pinion centre in the S direction versus

pinion speed. , TE-based formulation (with NLTE ¼ 0; , from Eq. (42) (TE-based formulation); ,

reference.
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6.3.4. Helical gears—short tip relief and pitch errors on the pinion (Table 1 and Fig. 5), NLTEa0
The tooth profiles were modified as indicated in Table 1 and the same cumulative pitch error

distribution as for the spur gear example was introduced. Simulations were conducted for the
lowest damping factor of 0.03. Figs. 13a–c show that, generally speaking, the dynamic response
curves by the method of reference and the method based on transmission errors accord well, while
the solutions by the truncated perturbation method are less satisfactory (although helical gears
generate lower mesh stiffness variations).

6.3.5. Positions of the nodes or section of reference for the definition of TES

The final test dealt with the validity of the correction factor wx0 in Eqs. (42) and (48a)
which is the only parameter accounting for the positions of the virtual or real encoders in the
definition of transmission errors. Three different combinations of positions were considered;
they are schematically represented in Fig. 7. The corresponding force and acceleration
time signals were calculated over the whole speed range (from quasi-static conditions to
900 rad/s on the pinion shaft). All results were superimposed and proved that the modification
by wx0 is sound and that the calculated dynamic forces and accelerations are independent of
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Fig. 11. Influence of no-load transmission error—instantaneous total mesh force at three different speeds (spur gear,

modal damping factor of 0.1, long profile modifications, no pitch error, t/Tm is the normalized time with respect to the

mesh period, Tm): (a) pinion speed of 100 rad/s, (b) pinion speed of 400 rad/s, (c) pinion speed of 800 rad/s. , TE-

based formulation (with NLTE ¼ 0); ——, from Eq. (42) (TE-based formulation); , reference.
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the section of reference (or encoder positions) used in transmission error calculations (or
measurements).
7. Discussion—closure

Some original equations were presented which make it possible to simulate gear excitations
from simulated or measured transmission errors. The validity of the proposed formulations was
confirmed by numerous comparisons with the results delivered by the equations of reference (14)
for both spur and helical gears.
Based on the analytical developments, the inter-dependence was clarified between the

excitations associated with a pinion–gear pair in mesh and the corresponding quasi-static
transmission error under load and no-load transmission error. It was demonstrated that, if there is
a similarity in the structure of the equations of motion for the sdof torsional model (20) and (21),
and the 3D axial–torsional–flexural models (42) and (45), several additional terms in the latter
equations prevent direct transposition of the torsional formulation onto 3D models. However, it
can be proved that the additional excitation components vanish when the system controlled by
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Fig. 12. Comparisons between the response curves from the solution of reference and the formulations based on

transmission errors (spur gear, modal damping factor of 0.1, short profile modifications, pitch errors on pinion): (a)

maximum dynamic tooth load versus pinion speed, (b) peak-to-peak of dynamic transmission error versus pinion speed,

(c) peak-to-peak of the acceleration at the pinion centre in the S direction versus pinion speed. , reference;

, from Eq. (42) (TE-based equations); , from Eq. (48a) (main order perturbation).
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Eq. (42) is reduced to the torsional model of Section 3. From Eq. (20), these additional terms read

F0 þ �W
TX0k Wð Þ cos bb þ aFSg Wð Þ

� �
V, (49)

In the particular case of the simple torsional model, one has

V ¼ cos bbW (50)

such that after simplifying with Eq. (34) Eq. (49) becomes:

F0 � FSV ¼
Cm0

Cr

" #
� Ft

Rb1

Rb2

" #
¼

0

0

� �
. (51)

Another significant difference between the two models comes from the excitation vectors
F Wð Þ;G Wð Þ, which are not directly related to transmission errors, and for example, account for
imbalances induced by pinion and gear eccentricities which can generate severe bending
vibrations.
It has also been proved that the quasi-static transmission error under load TES actually

contributes to the dynamic system excitations; nevertheless, the major time-varying forcing terms,
when considering elastic displacements as the unknowns in Eqs. (42), (48a) and (48b), depend
mostly on the difference between TES and the no-load transmission error NLTE, and not on TES
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Fig. 13. Comparisons between the response curves from the solution of reference and the formulations based on

transmission errors (Helical gear, modal damping factor of 0.03, short profile modifications, pitch errors on pinion): (a)

maximum dynamic tooth load versus pinion speed, (b) peak-to-peak of dynamic transmission error versus pinion speed,

(c) peak-to-peak of the acceleration at the pinion centre in the S direction versus pinion speed. , reference;

, from Eq. (42) (TE-based equations); , from Eq. (48a) (main order perturbation).
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only. Note that, in contrast to the sdof model, NLTE cannot be transferred from the right-hand
side of the differential system to the dof vector. One of the reasons is that the forcing term
k Wð Þ cos bb TEs �NLTEð Þ in Eq. (42) (and similarly km cos bb TEs �NLTEð Þ in Eq. (48a)) applies
only to the non-zero components of the structure vector V, i.e., the pinion–gear displacements and
rotations, and not to all dof. Consequently, it is found that, for 3D models, NLTE excitations
cannot be implicitly included in the dof.
The time derivatives of no-load transmission errors appear as additional excitations whose

contributions increase with speed and also depend on the nature of tooth deviations/errors. The
spectral contents of NLTE comprise mostly:
(a) low-frequency components associated with eccentricities, envelopes of cumulative pitch

errors, etc., whose contributions in terms of time derivatives of NLTE are moderate,
(b) higher frequencies associated with individual tooth deviations i.e., the mesh frequency and

its harmonics, having amplitudes generally lower than those associated with low frequencies (with
the noticeable exception of long profile reliefs on conventional spur gears).
Therefore, for most practical conditions, the excitation levels generated by the time derivatives

of no-load transmission error are less important than those due to the quasi-static transmission
error under load TES or (TES�NLTE).
The equations derived from a perturbation method are proved to be reasonable approximations

leading to acceptable solutions in most cases. It can be noticed that time-varying mesh stiffness or
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time-varying mesh stiffness matrices do not explicitly appear in Eqs. (47) and (48) but are
implicitly taken into account via transmission errors. Neglecting the forcing terms proportional to
NLTE0 or NLTE00 in the equations in terms of dynamic displacements Eqs. (47b) and (48b), it
becomes clear that the time variations of TES are key factors which largely contribute to the
dynamic behaviour since the only possible excitation at the main order is TE00S. From the latter, it
can be deduced that minimizing the fluctuations of quasi-static transmission error under load
reduces displacements and, via Eqs. (24) and (41), reduces dynamic tooth loads.
From a fundamental viewpoint, all the theoretical developments on 3D models rely on the

assumption that the averaged total stiffness matrix K̄ can be inverted. With regard to this
condition of a unique ‘averaged’ static deformed shape, the torsional displacements can be
troublesome because they can be defined at a constant. However, since these angles represent
elastic components superimposed on rigid-body large rotations, it is possible to choose any
arbitrary angular datum on the pinion or the gear shaft and resolve the above-mentioned
difficulty. Another fundamental hypothesis consists in the substitution of the position-dependent
structure vector V(Mi) by a constant structure vector. For narrow-faced gears, this constraint is
certainly acceptable without significant influence on dynamic responses (see for instance the
discussion about the iterative spectral method in Ref. [20] which partly relies on this
approximation). In the case of wide-faced gears, all the components of the structure vector
actually depend on the potential point of contact under consideration because of gear body
deflections (mainly torsion and bending) [21]. In these conditions, none of the theoretical
developments in Section 4 is possible anymore and no analytical formulation has been found for
gear excitations in terms of transmission errors only. Further work is certainly needed in this area,
but it seems that the concept of transmission errors as excitations or as excitation-related
parameters is more suited to narrow-faced gears.
Appendix A. Some analytical results

A.1. Expression of Cvv ¼ Vf gT K̄
� ��1

Vf g

The averaged structure vector {V} can be expressed as

Vf gT ¼ n;O1M0 � n;�n;�O2M0 � nð Þ (A.1)

and is proportional to the coordinates of the mesh force wrenches (see for instance Ref. [22] for a
review on the theory of screws and wrenches) on the pinion in O1 and on the gear in O2 when the
mesh force distribution is reduced to a single sliding vector applied along a line (M0,n) fixed in
space. (A discussion about the reduction of the mesh force wrench to a sliding vector and about
the position of its line of action can be found in Ref. [15]). Therefore, the quantity FS{V}
represents the set of external forces and moments in O1 and O2 generated by a mesh force FS as
shown in Fig. A1 (note that the system is in equilibrium).
Consequently, Cvv can be re-written in the form:

Cvv ¼
1

FS

Vf gT K̄
� ��1

FS Vf g
h i

¼
1

FS

Vf gT X
_

0

n o
, (A.2)
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where X
_

0

n o
¼ K̄
� ��1

FS Vf g is the static deflection vector associated with the loading conditions

shown in Fig. A1.

Vf gT X
_

0

n o
therefore represents the mesh (spring) deflection dms in the normal direction n, thus

one obtains:

Cvv ¼
dms

FS

¼
1

km

. (A.3)

A.2. Relations between X
_

0

n o
and {X 0}:

Both vectors represent static deflections of the geared system with the difference that X
_

0

n o
is

obtained with the mesh force as the only force applied to the geared unit (the realism of the
situation in Fig. A1 is not discussed here), while {X0} is the static deflection vector when constant
torsional torques are applied on the pinion shaft and on the gear shaft (which induce the same
force FS at the mesh interface). From this observation, the following properties can be established:

(a) Vf gT X
_

0

n o
and Vf gT X 0f g represent the static mesh deflection under the same load FS

consequently

Vf gT X 0f g ¼ Vf gT X
_

0

n o
(A.4)
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or using the abridged notations

vx0 ¼ v
_

x0 ¼
FS

km

. (A.5)

(b) Referring to Fig. A1, the deflection imposed by the pair of forces at the gear mesh is nil for all

axial and bending displacement components while the angles of torsion in X
_

0

n o
correspond to

two rigid-body rotations of the pinion and the gear shafts about the axes (O1, z) and (O2, z),
respectively. Separating the bending-axial (subscript BA), and torsional components (subscript
TORS), one obtains

X
_

0

n o
¼ X

_

0

n o
TORS

, (A.6)

X
_

0

n o
BA
¼ 0f g (A.7)

with X 0f gTORSa X
_

0

n o
TORS


 �
.

Because {W}, projection vector in the expression of transmission error, deals with torsional
components only, one can deduce the following properties:

Wf gT X
_

0

n o
¼ Wf gT X

_

0

n o
TORS

, (A.8)

Wf gT X 0f g ¼ Wf gT X 0f gTORS. (A.9)

The torsional components of X
_

0

n o
being constant on the pinion and on the gear shaft (but

different on each shaft), it can be observed that Wf gT X
_

0

n o
is independent of the positions of the

nodes of reference (or encoders) for calculating transmission error as long as one node (encoder) is
on the pinion shaft and the second one on the gear shaft. Choosing the pinion node and the gear
node as references and using Eq. (A.4), one finds

Wf gT X
_

0

n o
¼

1

cos bb

Vf gT X
_

0

n o
¼

1

cos bb

Vf gT X 0f g. (A.10)

A.3. Expression of Cwv ¼ Wf gT K̄
� ��1

Vf g

Using the same approach as for Cvv, one obtains

Cwv ¼
1

FS

Wf gT X
_

0

n o
(A.11)
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which, after applying Eq. (A.10), gives

Cwv ¼
1

FS

vx0

cos bb

¼
1

km cos bb

. (A.12)

A.4. Expression of vxs ¼ Vf gT X Sf g

From the expression of the quasi-static displacement vector {XS} in Eq. (32), vxs is written as

vxs ¼ vx0 þ
Cvv

Cwv

TEs � wx0 �NLTEð Þ (A.13)

which, after applying Eqs. (A.3) and (A.12), finally gives

vxs ¼ vx0 þ cos bb TEs � wx0 �NLTEð Þ. (A.14)
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